
Evaluating a framework:
A guide for business leaders

A PR ACT I CA L A PPR OAC H

https://vaadin.com/

2I n tro d u ctio n

Introduction

Vaadin’s services division has consulted on and supported the development of 700+
Vaadin enterprise web applications over 20 years. Our involvement has ranged from
targeted UX consulting and development support, to complete turnkey development
projects. This whitepaper on how to evaluate a framework is based on our extensive
experience on the subject.

To learn about our development, UX and mentorship consulting services, please visit:
vaadin.com/consulting.

The Vaadin platform is a modern, open-source Java web framework that allows you to
build UX-first web applications that run on any platform. Vaadin applications are secure
by default, handle complex enterprise use-cases with ease and provide the stellar user
experience your customers and staff deserve.

This whitepaper is structured as follows:

The role of a framework in a technology stack	 3

An introduction to tech stacks 	 3

What is a framework, and do you need one?	 4

The need for an objective approach to framework evaluation	 5

Siloing	 5

Technical debt	 6

Untenable maintenance overhead	 6

Evaluating a framework	 7

Prerequisites for using this evaluation methodology	 7

Methodology of the evaluation	 7

Functional requirements	 8

Non-functional requirements	 8

A sample evaluation matrix	 9

Baseline example using Vaadin	 11

Printable evaluation matrix	 13

Assigning weight by importance to each evaluation criterion	 14

Individual evaluator scoring sheet for a single framework	 15

Weighted average calculation sheet	 16

https://vaadin.com/consulting
https://vaadin.com/

3T h e rol e o f a f ra m e w or k i n a t e ch n olo g y s tac k

The role of a framework in a
technology stack

An introduction to tech stacks
A technology stack is an umbrella term for all the technologies that are used to build and
deploy your application. In the broadest sense of the term, a stack can include everything
from the programming languages, supporting frameworks, databases and other third-
party services, to web servers and operating systems.

The term “stack” comes from the tendency of technologies to stack, one layer on top of
the previous one.

In the interest of clarity, this whitepaper adopts a narrower definition of a stack, and
includes only:

•	Programming languages

•	Databases

•	Web frameworks

•	3rd-party tools, libraries and dependencies.

It’s important to remember that there is no objective “best” stack. No technology is
a silver bullet. There are pros and cons to every option, and some will better suit your
project, team and experience than others. Your success depends on finding the right
combination of technologies to build a suitable stack for your organization, use-case and
team.

https://vaadin.com/

4T h e rol e o f a f ra m e w or k i n a t e ch n olo g y s tac k

Not all applications will use every part of the stack either. The final stack depends on the
complexity and functionality of the application in question.

We commonly consult on projects that use the following Java + Vaadin stack:

Language: Java, with some CSS for additional styling
Framework(s): Vaadin + Spring
Database: MySQL

What is a framework, and do you need one?
It is possible to build a web application using only programming languages, such as
HTML, CSS and JavaScript--no framework is necessary.

However, as your application increases in complexity, so too will the scale and complexity
of your codebase. Writing every single bit of functionality from scratch, typically results
in an excess of unmaintainable spaghetti code, not to mention an inordinately-long
development time and high costs.

Frameworks offer a solution to this problem: they abstract away and automate many of
the core functionalities that are common to a majority of web applications. This allows
developers to better focus on building features that bring value to users, while keeping
the design and code of your project (or projects) consistent and reusable.

In addition, writing vanilla code without a framework can leave you susceptible to
obsolescence caused by changing perceptions and understanding of the project’s
domain. This can eventually render the architecture of an application obsolete and no
longer suited to its purpose. Frameworks mitigate this risk, as they evolve and remain
adaptable through high usage and adoption.

Every application consists of two parts: the frontend (client side) and the backend (server
side).

•	The frontend comprises the UI and visual elements that allows users to interact with
your application. The frontend portion of a web app runs in the user’s browser. Some
web apps can also run application logic for things like authentication on the frontend.

•	The backend runs on a server and comprises the database, business
logic and application logic of an application. The backend portion of your
application provides your UI with data to display, processes and stores user
input, accesses and persists data using databases and similar functions.

Frameworks are categorized as client-side, server-side or full-stack. This is based on
where they run, not necessarily on the functionality they provide. For example, Angular
and React are both client-side UI frameworks. However, Vaadin is a full-stack framework,
as it runs on both the frontend and the backend. In addition, it includes functionality for
securely automating the connection between the UI and the backend.

https://vaadin.com/

5T h e n e e d f or a n o b j e cti v e approach to f ra m e w or k e v al u atio n

The need for an objective
approach to framework

evaluation

If you are a business leader with a busy schedule and non-technical background, it
may be tempting to leave this decision solely to your development team. However, this
approach can result in significant drawbacks and consequences for your business in the
long run.

From a developer’s perspective, it makes sense to recommend a framework (and stack)
based on their proficiencies, interest level and the stack’s technical merits alone. This
means that your organizational and business needs may likely go unaddressed.

In addition, open-source frameworks without vendor backing are prone to deprecation
and abandonment, should the community lose interest.

Potential issues resulting from an incorrectly-chosen framework (and stack) include:

Siloing
Siloing refers to a situation where different projects, or even parts of a single project,
use completely different technology stacks. This is a common issue faced by larger
enterprises and results from:

•	Corporate acquisitions that use disparate technology stacks.

•	New projects extending older projects from a different era that use
disparate technology stacks and require separate, dedicated teams.

•	The lack of a technology strategy or decentralized technology decision making.

When siloing occurs:

•	Maintenance, updates and migrations become complex and costly affairs.

•	Your business may need to retain multiple teams for each project, as
developer knowledge is not always interchangeable between stacks.

•	It reduces resourcing flexibility, forcing you to hire new talent, rather
than to shift team members from one project to another.

https://vaadin.com/

6T h e n e e d f or a n o b j e cti v e approach to f ra m e w or k e v al u atio n

Technical debt
Technical debt is the cost of choosing to build an application using a quick solution
or hack, instead of taking the time to properly develop your application in a scalable
manner. Your project may get to market sooner (and at a lower initial cost), but the
resulting application will be more fragile and difficult to develop further, without major
refactoring and fixes to the codebase.

It is normal for every development project to accumulate some level of technical debt.
However, a rushed application, built on an unsuitable technology stack will result in a far
greater debt.

It is therefore imperative that both business and technical stakeholders work together to
carefully outline their requirements, select the appropriate technology stack and develop
the application properly, even if it takes a bit more time, money and effort to get to
market initially.

Untenable maintenance overhead
Selecting a framework that doesn’t adequately meet your business needs can lead to
significantly higher maintenance overhead and long-term risk to your business. This can
happen as a result of:

•	The framework being deprecated down the road.

•	Drastic rewrites or changes to the framework causing breaking
changes that necessitate major updates to your code.

•	A poorly-evaluated technology stack not meeting the future
requirements of the project or organization.

To avoid unmanageable maintenance, it is vital that you, as an executive or business
leader, get involved in the evaluation process to complement your development team’s
hands-on experience with your critical, vision-level thinking and thorough understanding
of your business needs.

https://vaadin.com/

7E v al u ati n g a f ra m e w or k

Evaluating a framework

Prerequisites for using this evaluation methodology
This whitepaper assumes that your organization:

•	Has decided to build a web application.

•	Has determined the project parameters and KPIs.

•	Has defined the project scope.

•	Has mapped out the functional requirements of the project.

•	Is evaluating a technology stack to be used with a web framework for your project

Methodology of the evaluation
We have presented an evaluation framework consisting of a set of generalized evaluation
criteria that are relevant for a majority of development projects.

For each framework:

Assign a weight (out of 5) to each of the evaluation criteria, based on its importance to
your project. In order to completely exclude a criteria from the score, simply assign it a
score of “0”, or delete it from the matrix.

•	In order to have an objectively comparable analysis, it is important
that each framework under consideration is evaluated using the
same set of criteria, which are assigned the same weights.

•	The sample evaluation matrix below includes guidelines
for assigning weights for each criterion.

•	There is an associated Google Sheets template available in the “Evaluation
templates” section of this whitepaper. You can click on the link, duplicate it and
use it to conduct your evaluation. The template includes step-by-step instructions
to guide you through evaluating a single framework, along with ready-made
formulae for calculating the weighted averages and scores. Simply duplicate and
repeat the process in the template for each framework under consideration.

Have at least 3 developers in your organization individually evaluate each framework
under consideration.

•	The evaluations should be conducted independently and
without discussion to ensure their objectivity.

•	The evaluations should be reviewed with managerial stakeholders to
ensure that business concerns are properly and fully addressed.

Tally up the scores of each evaluator and calculate the score for each category.

https://vaadin.com/

8E v al u ati n g a f ra m e w or k

Calculate the weighted average by:

•	Multiplying each category’s final score (total of all 3 evaluators) by the
assigned weight. This gives you the weighted criterion total.

•	Tallying up all the weighted criterion totals of each criterion.

We recommend investing in a comprehensive proof of concept (POC), especially for
large and mission critical applications. This will ensure that the assessments are indeed
based on fact and not personal opinion or bias. Vaadin provided POC services for Vaadin
application development projects. For more information, visit: https://www.vaadin.com/
consulting

Functional requirements
The framework you select must first and foremost cater to your project’s functional
requirements.

In software-development parlance, functional requirements define the functional
elements needed in the application. For example, send an email when a purchase is
made, record the purchase in a database, and so on.

You must ensure that your framework (and stack) of choice has the capability to build an
application that includes these tasks.

This aspect of the evaluation process is primarily conducted by your development team,
but should be based on specifications that you have already agreed on with them.

Non-functional requirements
Non-functional requirements comprise any that aren’t explicitly concerned with the
functionality of the application. These considerations are nonetheless critical to the
success of your project, as they include important elements, such as accessibility,
scalability, maintainability, business needs and costs.

The evaluation matrix that follows details how to evaluate non-functional requirements.

https://www.vaadin.com/consulting
https://www.vaadin.com/consulting
https://vaadin.com/

9E v al u ati n g a f ra m e w or k

A sample evaluation matrix
Guidelines for scoring: This column includes a set of guidelines (questions and
suggestions) to help your evaluators determine a framework’s suitability for each
criterion.

Guidelines for assigning weight based on importance: This column maps each criterion
to a business benefit, making it easier for you to decide if the criterion is important to
your project, team and organization.

Evaluation criteria Guidelines for scoring

(Recommended maximum score: 5)

Guidelines for assigning weight based on

importance (5: most important / 1: least

important)

Complexity of the solution 1. The complexity of the solution depends on how many technologies

must be individually selected, evaluated and maintained as part of

the stack.

A less complex solution is always better.

Less complexity results in:

•	 lower risk of deprecation

•	 easier updates and maintenance

•	 quicker time to market

Easy solution to integrate UI

with the backend

1. Does the framework provide an easy option for connecting an app’s

UI to the backend?

Easy, automated method to connect UI to

backend results in:

•	 quicker time to market

•	 higher security

Support for target devices and

browsers

1. Can apps built with the framework support all necessary devices

and browsers?

2. Are separate applications necessary to support different browsers

and devices?

Lower application count results in:

•	 quicker time to market

•	 lower costs

•	 easier maintenance

Component-based UI

development model

1. Does the framework build UIs in a component-based manner? We

recommend building component-based UIs as they are

Modular

Reusable.

Component-based UIs result in:

•	 quicker time to market

•	 ease of building and updating complex UIs

Performance considerations 1. Will the UI of the developed app have any noticeable input lag?

2. Will the developed app be capable of supporting the expected

number of concurrent users (within your budget)?

3. Does your use-case allow for constant connectivity, or are robust

offline capabilities required? The architecture of the framework will

dictate whether or not your application can function offline

Performance considerations affect:

•	 technical viability

•	 maintenance overhead

•	 user adoption

Security considerations 1. Does the framework integrate seamlessly with common security

frameworks and tools?

2. Does the architecture of the framework enforce security by

preventing common attacks (such as XSS) and helping developers

avoid mistakes?

Framework’s in-built security capabilities affect:

•	 technical viability

•	 legal risk

•	 long-term risk

•	 user adoption and trust

Enables rapid UI development 1. Does the framework ship with the required tools, features and first-

party component library to help speed up UI building?

Speed of UI development affects:

•	 time to market

•	 initial development costs

https://vaadin.com/

1 0E v al u ati n g a f ra m e w or k

Accessible UI building

capabilities

1. Does the framework support easily building accessibility-compliant

UIs out of the box?

2. How much extra work / steps are needed to make UIs accessible?

Ease of building accessible UIs result in:

•	 wider user adoption

•	 minimizing legal risk

•	 quicker time to market

Type of licenses needed 1. Is the framework:

Commercial, closed source:

Reliable, but more expensive and vendor lock-in is possible.

Community maintained, open-source

Flexible and less expensive, but longevity and reliability are not

assured.

Vendor maintained, open source:

Flexibility, longevity and reliability is assured at a lower cost.

We recommend the 3rd option, however, this ultimately depends on

your organization and legal team’s needs and requirements.

The type of license affects:

•	 flexibility

•	 project costs

•	 longevity

•	 long-term legal risk

Extent of vendor and

community support

1. Does the vendor provide any support options?

2. How easy is it to get support from the developer community?

3. Is there a public or vendor forum?

4. What other communication channels are available for support?

More support results in:

•	 quicker time to market

•	 increased longevity

•	 decreased legal risk

Forced update frequency to

major versions with breaking

changes

1. How frequently must you update to major versions to maintain

access to security patches and bug-fixes?

2. How extensive (and expensive) is it to update your custom code

when updates include breaking changes?

Lower update frequency results in:

•	 more resources for feature development

•	 greater stability for complex apps

•	 less disruption to users

Ease of updating to new

versions of the framework

1. Does the community / vendor make it easy to stay current with

underlying technologies by providing adequate documentation, tools

and similar add-ons?

2. Does the vendor ensure compatibility of underlying technologies,

or must they be updated separately?

Frameworks and stacks that are easy to update

result in:

•	 lower maintenance overhead

•	 less disruption to users

Learning curve 1. Does the framework have a lot of framework-specific concepts for

developers to master?

2. How many languages are required to build or debug the complete

application?

An easier learning curve positively affects:

•	 hiring and onboarding costs

•	 available talent pool

Ease of finding qualified talent

/ consultants to assist with the

project

1. How easy is it to find qualified developers and consultants to assist

on the project, if needed?

Ease of finding qualified talent / consultants

affects:

•	 time to market

•	 long-term risk

•	 hiring and development costs

Framework maturity and

longevity

1. Has the framework been used successfully in enterprise projects of

a similar scale?

2. Is the framework’s longevity assured for your project’s estimated

lifecycle? To answer this question, consider:

License type

Project status in vendor organization

Vendor and community’s commitment to further development

Size of the enterprise user base

A more mature, stable and vendor-prioritized

framework results in:

•	 lower long-term risk

•	 greater longevity of project

•	 proof of technical viability

https://vaadin.com/

1 1Ba s e li n e e x a m pl e u s i n g Vaa d i n

Baseline example using Vaadin

The following example provides the information regarding Vaadin required by your
evaluators to answer the questions posed in the “guidelines for scoring” column of the
sample evaluation matrix.

Category Comments

Complexity of the solution Full-stack framework

Commonly used stack:

Frameworks: Vaadin, Spring

UI + backend connection: Vaadin

Database: Multiple options (IBM D2, MYSQL, PostgreSQL are commonly used)

Additional: Spring Boot

Easy solution to integrate UI with the

backend

Available. Vaadin automates the connection between UI and backend in a secure and type-safe manner.

Support for your target devices and

browsers

Vaadin helps you build PWAs (progressive web applications) that:

•	 Run on most platforms.

•	 Perform like native applications.

•	 Can be installed directly from a browser.

Component-based UI development

model

Yes. Vaadin allows you to build UIs with reusable, standards-based components.

Performance considerations Vaadin applications run on the server, requiring each user interaction to complete a round trip to the server for

processing.

The impact on performance is negligible when internet connectivity is good.

Vaadin supports approximately 10,000 concurrent users on a typical enterprise-level server.

Security considerations Vaadin supports seamless integrations with many popular security frameworks and tools, such as Spring Security

and oAuth.

Vaadin applications are architecturally secure because all your code runs on the server, and is not exposed to the

user’s browser. Vaadin applications have been penetration tested by our customers with flawless results.

Enables rapid UI development Vaadin lets you easily build complex UIs with great designs. It ships with:

•	 UI component library of 45+ components

•	 Easily-customizable Lumo theme

•	 Visual UI builder (that does not require the knowledge of HTML / CSS)

•	 TestBench to speed up testing

Accessible UI building capabilities Yes. All Vaadin UI components support WAI-ARIA accessibility standards out of the box. Vaadin also provides

comprehensive documentation on accessibility at: https://vaadin.com/accessibility

Type of license Vaadin is vendor maintained and open source, released under the permissive Apache 2.0 license. It’s free for

commercial usage as well.

Vaadin Ltd. ensures compatibility of underlying technologies, and provides regular updates and extensive support.

https://vaadin.com/accessibility
https://vaadin.com/

1 2Ba s e li n e e x a m pl e u s i n g Vaa d i n

Extent of vendor / community support The vendor offers extensive support services including:

•	 Comprehensive warranty

•	 Comprehensive legal indemnification

•	 24/7 expert support

•	 On-site support and consulting

•	 Mentorship

•	 Development services

Vaadin’s own team (and community) are active on most public developer forums. Vendor also offers its own forum

for Vaadin users to seek help.

Forced update frequency to major

versions with breaking changes

Vaadin releases a new major LTS version every 2 years; forced updates are every 5 years, but can be delayed for up

to 15 years (enterprise subscribers).

This allows your team to focus on building features and update your application when most convenient.

Ease of staying current with underlying

and dependent technologies

Vaadin provides detailed documentation, compatibility tooling and dedicated migration / update consultancy

services to assist with migrations.

Learning curve Easy. Vaadin does not have many framework-specific concepts to master for Java developers.

Languages required to build an app:

Java (required), CSS and HTML (optional for UI styling).

Ease of finding qualified talent /

consultants to assist with projects

Moderate. Vaadin’s developer base is smaller than the larger frameworks (Angular or React), however:

Most Java developers can easily learn Vaadin.

Vendor offers a job placement service.

Vendor offers competitive consultancy / development services.

Framework maturity and longevity Vaadin has been used in complex enterprise projects for over 20 years.

Vaadin is the flagship product of the vendor; continued development is assured. The framework is also open-

source, with optional free and paid support + tools, mitigating long-term risk.

Vaadin is used by 40% of Fortune-100 companies, and 1000+ other businesses in a wide range of verticals.

Please visit vaadin.com/customer-stories or contact sales for more information.

https://vaadin.com/customer-stories
https://vaadin.com/

1 3A u to m at e d e v al u atio n s pr e a d s h e e t t e m plat e

Automated evaluation
spreadsheet template

Our spreadsheet evaluation template comes with built-in formulae and functionality to
automate the evaluation and data entry processes. Your evaluation team simply enter
the weight for each criteria, and their scores into the spreadsheet, and the formulae
will take care of everything else, giving you a final weighted average for the framework.
Simply click below to copy the template and get started.

Please note: Each copy of the template evaluates a single framework. You will need
separate copies for each framework under evaluation.

Detailed instructions are provided within the template.

https://docs.google.com/spreadsheets/d/1cc_SbCk1QrjD_0TdNUT-

ijuHGMxryNzNpyIZfpX0uTU/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1cc_SbCk1QrjD_0TdNUT-ijuHGMxryNzNpyIZfpX0uTU/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1cc_SbCk1QrjD_0TdNUT-ijuHGMxryNzNpyIZfpX0uTU/edit?usp=sharing
https://vaadin.com/

1 4A u to m at e d e v al u atio n s pr e a d s h e e t t e m plat e

Assigning weight by importance
to each evaluation criterion

You can follow the guidelines provided in the associated whitepaper to assign a weight
for each criterion, based on its relevance and importance to your project, team and
organization.

Category Weight based on importance
(out of 5)

Complexity of the solution

Easy solution to integrate UI with the backend

Support for target devices and browsers

Component-based UI development model

Performance considerations

Security considerations

Enables rapid UI development

Accessible UI building capabilities

Type of licenses needed

Extent of vendor and community support

Forced update frequency to major versions with breaking changes

Ease of updating to new versions of the framework

Learning curve

Ease of finding qualified talent / consultants to assist with the project

Framework maturity and longevity

Total

Average score[(Total 1 + Total 2 + Total 3) / 3]

https://vaadin.com/

1 5A u to m at e d e v al u atio n s pr e a d s h e e t t e m plat e

Individual evaluator scoring sheet
for a single framework

Evaluator’s name:

Framework being evaluated:

Category Score

Complexity of the solution

Easy solution to integrate UI with the backend

Support for target devices and browsers

Component-based UI development model

Performance considerations

Security considerations

Enables rapid UI development

Accessible UI building capabilities

Type of licenses needed

Extent of vendor and community support

Forced update frequency to major versions with breaking changes

Ease of updating to new versions of the framework

Learning curve

Ease of finding qualified talent / consultants to assist with the project

Framework maturity and longevity

Total

Average score[(Total 1 + Total 2 + Total 3) / 3]

https://vaadin.com/

1 6A u to m at e d e v al u atio n s pr e a d s h e e t t e m plat e

Weighted average calculation sheet

Evaluator’s name:

Framework being evaluated:

Category Total score of all 3
evaluators

Weight Weighted score (Total
score of all 3 evaluators

* weight)

Complexity of the solution

Easy solution to integrate UI with the backend

Support for target devices and browsers

Component-based UI development model

Performance considerations

Security considerations

Enables rapid UI development

Accessible UI building capabilities

Type of licenses needed

Extent of vendor and community support

Forced update frequency to major versions with
breaking changes

Ease of updating to new versions of the framework

Learning curve

Ease of finding qualified talent / consultants to assist
with the project

Framework maturity and longevity

Total

Weighted average score of framework (Total of
weighted score / Total weight)

Repeat this process for each framework under consideration, and compare the weighted
average scores of each framework.

https://vaadin.com/

	_1z4cu1lr16af
	_v1f8jg21zgwh
	_b9jv33kiwgu9
	_lfjlajfr8hsj
	_lrzuon4t6g0b
	_59zfnvmmh9x6
	_5zp67pymgzjs
	_lrh30thqrn77
	_j1mij4gxi39k
	_l1v42vurlb9u
	_kuxj3fd4xkw8
	_dc1tlouyycsu
	_e90dkbdrmx7b
	_u1o0ln987a29
	_5f6szi4j9afw
	_c92oud2qvl4h
	_1yfqnpvzp6fw
	The role of a framework in a technology stack
	An introduction to tech stacks
	What is a framework, and do you need one?

	The need for an objective approach to framework evaluation
	Siloing
	Technical debt
	Untenable maintenance overhead

	Evaluating a framework
	Prerequisites for using this evaluation methodology
	Methodology of the evaluation
	Functional requirements
	Non-functional requirements
	A sample evaluation matrix

	Baseline example using Vaadin
	Printable evaluation matrix
	Assigning weight by importance
to each evaluation criterion
	Individual evaluator scoring sheet
for a single framework
	Weighted average calculation sheet

