
A Five-Step Blueprint for 
Decision-Makers

Modernizing Java Swing Applications

Table of contents

Executive Sumary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

The Clock is Ticking for Swing Users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Moving Beyond Java Swing: The Benefits of Modernization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

          Eliminating Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

                    Ever-Increasing Maintenance Costs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

                    Slow and Costly Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

                    Losing Market Share to the Mobile Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

                    Security Vulnerabilities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

          Unlocking New Opportunities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

                    Developer Productivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

                    Modern Components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

                    Modern Java and Modern Web. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

                    Enhanced Security and Compliance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0

                    A Cost-Effective Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0

                    Support and Resources. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 0

How Vaadin Simplifies Modernization from Swing to Web. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2

          Automating your Swing to Web Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 3

                    Fine-Tuning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

                   Feature Pack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 5

A Five-Step Path to a Successful Swing Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 7

          Step 1: Migration Assessment and Tech Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 8

          Step 2: Fine-tuning the Conversion Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 9

          Step 3: Legacy Runtime Powers Incremental Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

          Step 4: Manual Migration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1

          Step 5: Re-Design the Chosen Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2

How HPD Lendscape and Procountor Succeeded with Their Migrations to Vaadin. . . . . 24

         Procoutor Oy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

          HPD Lendscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Get Started. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26



Modernizing a Java Swing application for the web can eliminate legacy 
dependencies, reduce the maintenance burden, ensure compatibility with 
modern web technologies, and enhance the user experience, among other 
advantages. Many traditional Java modernization projects, adopting a phased 
approach, can take years, with developers often lacking the motivation to finish. 
The automation provided by the Vaadin Modernization Toolkit can refactor the 
bulk of your Java code, enabling you to kill the tail on legacy dependencies 
quickly. This offers the fastest route to migrate your working Java applications 
away from outdated frameworks.

Executive summary

3



Migrating a Java Swing to a web application – or any legacy application, for 
that matter  – can be a complex and time-consuming process. Despite the 
challenges, however, the benefits of application modernization far outweigh 
the difficulties. And with the right tools, a Swing migration can be a relatively 
seamless process. 

Whether you are looking to improve system performance, meet current security 
standards, or simply provide a better user experience, the insights offered in 
this white paper will guide you. It details the benefits of updating your software 
environment and explains how Vaadin can simplify and speed up your transition 
from Swing to Web with automated tooling.

5

You might be questioning the urgency behind modernizing Swing applications, 
especially when Oracle still supports Swing and your applications are functioning 
without issues. However, waiting too long to migrate your mission-critical 
applications away from Swing could be as harmful as rushing to be the first to do 
so.

Staying with Swing presents multiple challenges that affect not just your 
application but also your end users, development team, and the overall 
competitiveness of your company. Managing client installations becomes 
notably more cumbersome on Swing, and its applications are incompatible with 
certain devices, such as iPads. Furthermore, in an era where web alternatives 
are preferred, desktop applications, including those built on Swing, are perceived 
as outdated. 

Moreover, time is not on your side. The cost of migration is unlikely to decrease 
over time. This is primarily because technological advancements and inflationary 
pressures tend to increase the expenses associated with software development 
and migration efforts over time. Additionally, Swing has not been included 
in college curricula for many years, resulting in a scarcity of new developers 
equipped with the necessary skills to understand or modernize your application.

Lastly, consider the aspect of innovation. The ecosystem for Swing tools has 
not evolved for quite some time, making it challenging for your developers and 
organization to leverage the extensive Java open source work available. Even 
if your Swing application is performing satisfactorily within your organization 
without immediate security concerns, its reliance on Swing is likely hindering 
your innovation capabilities and ability to stay competitive in the fast-evolving 
technological landscape.

6



All software systems accumulate technical debt, essentially a “tax” that has to 
be paid to address issues that arise from using legacy technology. According to 
McKinsey, companies often find themselves paying an additional 10 to 20% on 
top of project costs to manage and mitigate this tech debt.

The old code forces your development team to spend more and more time 
maintaining it, which detracts from the time available to implement new 
features. Working with old technology also becomes more time-consuming as 
the team tries to fulfill new, non-functional requirements, such as performance 
or scalability, that would be simple to implement with the new technology. 
Reducing technical debt enables engineers to dedicate up to 50% more of their 
time to projects that actually generate value.

Eliminating constraints

7

Ever-Increasing Maintenance Costs

The business benefits of migration typically fall into two categories: 
removing the constraints imposed by the old technology and unlocking 
the opportunities introduced by the new technology.

Unlike web applications, delivering and keeping desktop applications 
synchronized with the latest updates is slower and more error-prone. In addition, 
the setup and maintenance costs of the infrastructure required to deliver and 
deploy them are significantly higher than for web applications.

Slow and Costly Deployment

The shift from desktop to mobile caused the end of the desktop-only era, 
leading to a significant loss in market share for platforms unable to adapt. In 
1999, a Swing application could work on almost any graphics-enabled computing 
device without recompiling, yet less than half of the devices sold today can run 
native Swing. 

This lack of innovation hinders user experience and can lead to revenue 
losses. The shift is not just in consumer behavior; mobile devices have also 
become prevalent in business environments, necessitating applications that 
are accessible across tablets, phones, and desktop computers. The inability 
to support mobile platforms has resulted in a considerable reduction in market 
share, underscoring the importance of adapting to the mobile web.

Losing Market Share to the Mobile Web

Legacy systems can pose a significant cybersecurity risk due to accumulated 
vulnerabilities and inadequate patching practices over the years. Modernizing 
these systems by enhancing security measures and ensuring compliance with 
industry standards and regulations is essential. Such modernization efforts are 
crucial for reducing the likelihood of security breaches and avoiding the financial 
repercussions of non-compliance.

For instance, strict privacy laws, including the General Data Protection 
Regulation (GDPR), California Consumer Privacy Act (CCPA), and Health 
Insurance Portability and Accountability Act (HIPAA), can impose significant 
fines on organizations that fail to safeguard their customers' data adequately. 
According to research conducted by IBM, the global average cost of a data 
breach in 2023 climbed to $4.45 million, representing a 15% increase over 
the last three years, highlighting the financial stakes of ensuring robust 
cybersecurity and compliance measures.

Security Vulnerabilities

8

https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business
https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/breaking-technical-debts-vicious-cycle-to-modernize-your-business
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://www.ibm.com/reports/data-breach?utm_content=SRCWW&p1=Search&p4=43700077628776594&p5=p&gad_source=1&gclid=CjwKCAiAibeuBhAAEiwAiXBoJBGVZeksg3UUIkauOPp9WDwEuc0fLBT1nU3BCQLitmYFZmepZ0lqVxoCD7kQAvD_BwE&gclsrc=aw.ds
https://www.ibm.com/reports/data-breach?utm_content=SRCWW&p1=Search&p4=43700077628776594&p5=p&gad_source=1&gclid=CjwKCAiAibeuBhAAEiwAiXBoJBGVZeksg3UUIkauOPp9WDwEuc0fLBT1nU3BCQLitmYFZmepZ0lqVxoCD7kQAvD_BwE&gclsrc=aw.ds


9

Unlocking New Opportunities

Developer Productivity

Vaadin brings you a set of award-winning web components that can 
ensure a smooth transition from Swing to the modern web application 
your users expect. Choosing Vaadin to web-enable your Swing 
applications offers many benefits:

Vaadin is the only well-supported UI framework for the Web with a Swing-like 
programming model. Vaadin applications are built using Java and support all the 
patterns your developers use to keep code organized. The platform abstracts 
away the details of browser execution with a Java API that keeps developers 
productive and makes them feel right at home with the new stack.

Modern Components

With Vaadin, you will get access to a regularly updated set of state-of-the-art 
components that pass the most stringent accessibility compliance tests, are 
coherently themable, work consistently on all devices, and have great UX. 

Modern Java and Modern Web

Finding new developers to maintain your Vaadin application has never been 
easier. Vaadin uses APIs with the newest Java versions like Streams, Optionals, 
and Lambdas. Vaadin has also been completely redeveloped with the latest 
browser standards, so with basic web and Java skills, new developers will be 
productive quickly. In addition, feature updates are instantly available on the web 
for all users, removing the need to upgrade desktop software. 

Enhanced Security and Compliance

Vaadin Flow is a server-side framework where all of your application’s state, 
business, and UI logic resides on the server. Unlike client-driven frameworks, 
a Vaadin application never exposes its internals to the browser, where 
vulnerabilities can be leveraged by an attacker. This makes it inherently more 
secure than many of the alternatives.

A Cost-Effective Transition

Vaadin offers one of the most cost-effective paths to web-enable your valuable 
applications - more code can be reused, and what can’t be reused can often be 
refactored. By leveraging more of the code that works today, there will be less 
need for testing and troubleshooting due to fewer defects.

Support and Resources

Vaadin supports you both during your modernization project and with tools 
and resources afterward. During your project, Vaadin offers software tools for 
understanding and refactoring Swing applications. Once your project is finished, 
Vaadin support is available to help bridge any hypercare period and beyond to 
provide fixes for new problems introduced by your browser updates and the 
ever-changing world of security.

10

https://vaadin.com/components
https://vaadin.com/components


12

How Vaadin Simplifies  
Modernization from Swing  
to Web
The Vaadin Flow framework is the most widely adopted full-stack UI framework 
for writing modern web applications entirely in Java. Vaadin allows developers to 
continue developing their applications in 100% Java, making the transition from 
Swing as smooth as possible. 

Vaadin Flow’s unique architecture simplifies Java application modernization, 
reducing effort by integrating the layers and technologies needed for UI and 
communication into one, unlike frameworks such as Angular. 

We also provide up to 15 years of support for a Vaadin version, so you won't 
have to think about migrating to a new technology again any time soon!

Simplified example: Creating web UI that interacts with Java (Spring) backend 
service. Vaadin Flow facilitates a secure connection between UI and the backend 
service.

https://vaadin.com/flow


13

The Vaadin Modernization Toolkit offers a streamlined solution for transitioning 
from Swing to Vaadin, simplifying the process of converting Swing applications 
into modern web applications. Our Java-to-Java transpiler significantly reduces 
the investment required for such a transition. The Toolkit includes a source code 
refactoring tool, feature packs, and an option for phased migration, allowing for 
flexibility in how the migration is approached. The refactoring tool can be utilized 
once or multiple times throughout a project, adapting as the rules it applies are 
refined.

Automating your Swing to Web Migration

Designed to automate the migration of a portion of your application's source 
code, the Toolkit's effectiveness is further boosted by our team's ability to 
manually fine-tune the migration, ensuring it precisely meets the specific needs 
of your application. This combination of automation and customization makes 
the Vaadin Modernization Toolkit an invaluable resource for modernizing legacy 
applications.

This simplified example demonstrates how the transpiler preserves the code 
structure, though some lines may still require manual work.

14



Application modernization projects usually come with significant risks, mainly 
because teams often embark on such projects for the first time and lack the 
experience and guidance needed for effective planning. With Fine-tuning, teams 
can leverage the expertise of Vaadin experts who bring practical experience and 
share the burden of risk.

The Fine-tuning solution transforms your application to a predefined level of 
automation, ensuring each line of code is accurate and reliable, all at a fixed 
cost. All applications are unique, and any two applications can rely on the same 
framework but different versions or APIs, so it’s to be expected that Fine-tuning 
would be useful with any application.

Fine-Tuning

As a platform for building modern web applications, Vaadin aligns with the 
evolving best practices around “mobile-first” and “mobile-also” development. 
However, many older applications were optimized for “desktop-only” use, mainly 
serving knowledge workers. The developers of these applications have used a 
number of features of their frameworks to deliver value to users efficiently.

The feature packs of the Vaadin Modernization Toolkit reintroduce these 
capabilities. While these features are typically associated with desktop 
environments in practice, they can be applied to any component of an older 
framework. For example, consider how Swing divides the responsibilities 
for containing and arranging child components between Panels and 
LayoutManagers. The feature packs support these in addition to the 
arrangement strategy of GridLayout, BorderLayout, FlowLayout, and others.

Feature Pack

15



17

The Vaadin Modernization Team has successfully assessed over 80 large-scale 
Java applications. Utilizing our award-winning tools and expertise, we conduct a 
comprehensive assessment of technical risks and devise tailored strategies for 
modernizing your application. 

Various strategies for migrating a Swing application exist, yet most successful 
projects share several common phases. In this section, we'll outline these phases 
across five steps.

However, before taking steps in any direction, it makes sense to ensure that 
the direction is right. Proof of concepts are an ideal way to test the waters of 
a new stack and ensure it’s complying with the full range of non-functional 
requirements your team and users have moving forward. Proof of concepts take 
many forms and can have a range of scopes. 

One obvious consideration involves developers questioning whether they are 
comfortable with the responsibility of maintaining and supporting this application 
if it runs on “x” technology. It's also important to assess if developers are 
capable of creating a product that existing users will ultimately want to switch 
to. In addition, maintainability and usability are issues frequently addressed 
in proof of concepts because they directly impact the application’s principal 
stakeholders. 

How far should it go? That depends entirely on the application and the way it is 
used. If the application's scalability is a big concern, scalability should also be 
part of the proof of concept, likewise, for performance, availability, portability, 
accessibility, security, or any of the other non-functional attributes.

Now, let's explore the key steps involved in achieving a successful Swing 
migration.

With a successfully completed proof of concept behind them, stakeholders 
will be justified in looking at the migration more closely as a project. This is 
where a formal assessment will bear fruit, and you can look into quantifying 
and qualifying how the application depends on Swing, AWT, the desktop, and 
all the peripherals it’s connected to. Technical experts at Vaadin can perform a 
variety of assessments on Swing applications ranging from full-blown Migration 
Assessments to shorter assessments geared to understanding the impact of 
migrating with a specific conversion tool.

“Assess” is one of the three pillars of Vaadin’s tooling for Swing. Vaadin’s 
assessment tools work based on a formal parsing of your Java sources and your 
application’s build to deeply resolve all types it uses. This way, we can determine 
if a method invocation like pack() is related to the method in class javax.
swing.JInternalFrame or some other method declared in your application 
that just happens to have the same name. Having identified the Swing and AWT 
references, we now have a clearer understanding of the changes needed in your 
application to transition it to Vaadin.

This data also reveals the extent to which Vaadin’s automated refactoring tool 
accommodates the specific Swing APIs and classes your application utilizes, 
preparing us for the next step: fine-tuning the Modernization Toolkit.

Step 1: Migration Assessment and  
Tech Review

18

https://vaadin.com/solutions/migration-assistance
https://vaadin.com/solutions/migration-assistance


19 20

All applications are unique, and it’s normal that any automated refactoring tools 
and Feature Packs need to be adjusted to consider this uniqueness. Technical 
experts at Vaadin can fine-tune the Modernization Toolkit to improve its 
coverage of the APIs and customizations your application uses. 

To facilitate the process for stakeholders without experience with semi-
automated application modernization, Vaadin can offer the fine-tuning project to 
an agreed coverage percentage at a fixed price, complete with a guarantee of 
successful results.

Step 2: Fine-Tuning the Conversion Model

The actual migration phase can be either phased or big bang. The phased 
migration approach means you would gradually migrate your application 
incrementally to the new tech stack while keeping the old and new parts 
runnable side by side. For this purpose, Vaadin has a Swing Kit to run Vaadin-
based views inside a Swing application. An alternative is also to use Webswing 
with its migration modules specifically geared to Vaadin compatibility.

Although a phased approach benefits users and testers, a big-bang migration 
is typically the most cost-efficient method. In most cases, migration from Swing 
to Vaadin can be done semi-automated using Vaadin’s migration tooling. Tool-
assisted migration is an iterative process where each iteration involves adjusting 
the automation tools to suit the specifics of the application being migrated, 
running these tools, and then analyzing the results through testing. After 
achieving the optimal level of automation, the remaining migration tasks can be 
completed manually.

Step 3: Legacy Runtime Powers  
Incremental Migration

https://vaadin.com/docs/latest/tools/swing


2221

Step 4: Manual Migration

After utilizing the Vaadin Modernization Toolkit to migrate the bulk of the Java 
code to modern Vaadin Flow code, the remaining parts must either be manually 
converted, left to operate on a legacy runtime, or completely redesigned and 
rewritten. This conversion process can be undertaken incrementally, handling 
the application view by view over a transition period. This approach ensures 
continued development and allows the application to remain in production 
throughout the migration process.

Step 5: Re-Design the Chosen Views

The final step involves the strategic selection and redesign of the application's 
most impactful views, a phase where the full potential of modernization is 
realized. By focusing on these key areas, the process ensures the application 
meets modern standards and capitalizes on new opportunities for improvement. 
Vaadin Flow provides a productive and stable foundation for both modernization 
and future development efforts.

Simply transitioning away from outdated technologies can bring immediate 
benefits, such as making your application compatible with modern web 
browsers and devices, enhancing accessibility, improving the overall look and 
feel, boosting performance, and facilitating the application's move to cloud 
computing. This comprehensive redesign step can significantly improve your 
application's user experience and operational efficiency.



22

Don’t just take our word for it. Explore the real-life case studies below 
to see how other companies have successfully migrated from Swing to 
Vaadin.

Procoutor Oy

Procountor Oy successfully migrated its accounting software from desktop 
to the web using Vaadin. In just two years, they efficiently replaced Swing 
implementations with Vaadin, emphasizing a user experience (UX)-first 
approach. This migration allowed Procountor Oy to modernize its software, 
making it more accessible and user-friendly by moving it to a web-based 
platform. Vaadin's framework was key in this seamless transition, helping 
Procountor Oy create a modern, web-based accounting software that prioritizes 
user experience. Read the full story. 

24

https://vaadin.com/blog/procountor-made-a-ux-first-accounting-software-with-vaadin


HPD Lendscape
HPD Lendscape successfully migrated its intelligent finance platform from 
Java Swing to Vaadin, a modern web framework. This migration was driven by 
Vaadin's pattern-driven approach and adjusted methods, enabling code reuse 
and scalability. By transitioning to Vaadin, HPD was able to transform its finance 
platform, making it web-based and enhancing its design and user interface. The 
article highlights the advantages of Vaadin's approach in enabling a seamless 
transition from Swing to Web, emphasizing code efficiency and improved user 
experience. Read the full story.

Modernizing Java Swing applications is essential for businesses aiming to meet 
current standards, stay competitive, and respond to users' growing expectations 
for a better user experience. 

We encourage decision-makers to view modernization as a chance to improve 
their application's impact and operational efficiency. The migration process 
is greatly simplified with Vaadin's full-stack UI framework, Vaadin Flow, and 
automated tooling. The Modernization Toolkit makes this change easy and can 
be customized to fit your app's unique needs. The benefits? Better developer 
productivity, cost savings, modern features, good support, and stronger security 
– and above all – delighted users!

Ready to bring your Swing applications to the future?

Let our modernization team guide you through a successful migration. Book your 
FREE consultation with our solution architects today and map your path to a 
successful migration. 

Talk to an expert → 

25

https://vaadin.com/blog/hpd-migrated-their-intelligent-finance-platform-from-swing-to-vaadin
https://pages.vaadin.com/modernization-toolkit-contact

	About the report

	Button 1: 
	Button 2: 
	Button 3: 
	Button 4: 
	Button 5: 
	Button 6: 
	Button 7: 


